Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280562

RESUMO

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia , Estudos Transversais , Vitamina D/uso terapêutico , Vitaminas , Suplementos Nutricionais , Estudos Observacionais como Assunto
3.
Biomater Adv ; 139: 213023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882117

RESUMO

Biodegradable metals, zinc and magnesium, have been regarded as next-generation, biomedical implant materials to promote tissue repair and regeneration. These implants might also promote the vascularization of surrounding neotissue. Released metallic ions, Zn2+ and Mg2+, show promise in vitro to implement vessel growth by stimulating the expression of pro-angiogenic cytokines, yet there is little known regarding how cellular responses transcend to influence the tissue environment. This study serves to optimize angiogenic behavior using EA.hy926 endothelial cultures exposed to Zn2+ and Mg2+ gradients and observe the translation of these effects on blood vessel development via the in ovo chorioallantoic membrane (CAM) assay. Findings indicate that Zn2+ 10 µM and Mg2+ 10 mM instigate the most prominent effects using endothelial cultures via scratch wound and tube formation assays, yet higher concentrations at Zn2+ 50 µM and Mg2+ 50 mM encourage significant angiogenesis along the CAM. Immunoblotting results also conclude the presence and upregulation of cytokines involved in vessel growth. Optimizing the angiogenic potential of Zn2+ and Mg2+ separately sheds light to design future engineering constructs for promoting blood vessel development and successful assimilation between host and implant tissue.


Assuntos
Magnésio , Neovascularização Fisiológica , Animais , Membrana Corioalantoide , Citocinas , Magnésio/farmacologia , Neovascularização Patológica/tratamento farmacológico , Zinco/farmacologia
4.
Free Radic Biol Med ; 164: 429-438, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33359687

RESUMO

Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.


Assuntos
Produtos Finais de Glicação Avançada , Mitocôndrias , Animais , Arginina , Camundongos , Aldeído Pirúvico , Espécies Reativas de Oxigênio
5.
J Alzheimers Dis ; 76(1): 165-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32444539

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) are an important risk factor for the development of cognitive decline in aging and late-onset neurodegenerative diseases including Alzheimer's disease. However, whether and how dietary AGEs exacerbate cognitive impairment and brain mitochondrial dysfunction in the aging process remains largely unknown. OBJECTIVE: We investigated the direct effects of dietary AGEs on AGE adducts accumulation, mitochondrial function, and cognitive performance in mice. METHODS: Mice were fed the AGE+ diet or AGE- diet. We examined levels of AGE adducts in serum and cerebral cortexes by immunodetection and immunohistochemistry, determined levels of reactive oxygen species by biochemical analysis, detected enzyme activity associated with mitochondrial respiratory chain complexes I & IV and ATP levels, and assessed learning and memory ability by Morris Water Maze and nesting behavior. RESULTS: Levels of AGE adducts (MG-H1 and CEL) were robustly increased in the serum and brain of AGE+ diet fed mice compared to the AGE- group. Furthermore, greatly elevated levels of reactive oxygen species, decreased activities of mitochondrial respiratory chain complexes I & IV, reduced ATP levels, and impaired learning and memory were evident in AGE+ diet fed mice compared to the AGE- group. CONCLUSION: These results indicate that dietary AGEs are important sources of AGE accumulation in vivo, resulting in mitochondrial dysfunction, impairment of energy metabolism, and subsequent cognitive impairment. Thus, reducing AGEs intake to lower accumulation of AGEs could hold therapeutic potential for the prevention and treatment of AGEs-induced mitochondrial dysfunction linked to cognitive decline.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Dieta/efeitos adversos , Produtos Finais de Glicação Avançada/toxicidade , Mitocôndrias/metabolismo , Animais , Cognição/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Produtos Finais de Glicação Avançada/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Curr Protein Pept Sci ; 21(9): 846-859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368974

RESUMO

Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.


Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/metabolismo , Doenças Metabólicas/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/genética , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Regulação da Expressão Gênica , Produtos Finais de Glicação Avançada/genética , Glioxal/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lactoilglutationa Liase/genética , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Carbonilação Proteica , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/metabolismo , Transdução de Sinais
7.
Bioinformation ; 10(4): 167-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966515

RESUMO

UNLABELLED: The distribution of resistance to ampicillin, chloramphenicol, sulfonamides, tetracycline, and streptomycin among coliform in the Gomti river water samples was investigated. The coliform populations were isolated on Mac Conky and eosin methylene blue (EMB) agar plates supplemented with antibiotics. The incidence of resistance among the coliform population varied considerably in different drug and water sampling sites. Coliform bacteria showed lower drug resistant viable count in sampling site-III (receiving treated wastewater) as compared to more polluted site-I and site-II. Viable count of coliform population obtained on both medium was recorded higher against erythromycin from sampling site-III. Lower viable count of coliforms was recorded against tetracycline in site-II and III. Similar resistance pattern was obtained in the frequency of E. coli and Enterobacter species from all the three sampling sites. Percentage of antibiotic resistant E. coli was observed higher than Enterobacter spp among the total coliforms against all antibiotics tested without Erythromycin and penicillin in site-I and II respectively. Isolates of E. coli and Enterobacter spp. showed their tolerance level (MIC) in the range of 2-100 against the antibiotics tested. Maximum number of isolates of both genus exhibited their MICs at lower concentration range 2-5µg/ml against ciprofloxacin, tetracyclin and amoxycillin. ABBREVIATIONS: EMB - Eosin methylene blue, IMViC tests - Indole, Methyl Red, Voges Proskauer and Citrate Utilization Tests, MIC - Minimum inhibitory concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...